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Abstract. The quintessential property of neuronal systems is their intensive patterns of selective synap-
tic connections. The current work describes a physics-based approach to neuronal shape modeling and
synthesis and its consideration for the simulation of neuronal development and the formation of neuronal
communities. Starting from images of real neurons, geometrical measurements are obtained and used to
construct probabilistic models which can be subsequently sampled in order to produce morphologically
realistic neuronal cells. Such cells are progressively grown while monitoring their connections along time,
which are analysed in terms of percolation concepts. However, unlike traditional percolation, the critical
point is verified along the growth stages, not the density of cells, which remains constant throughout the
neuronal growth dynamics. It is shown, through simulations, that growing beta cells tend to reach per-
colation sooner than the alpha counterparts with the same diameter. Also, the percolation becomes more
abrupt for higher densities of cells, being markedly sharper for the beta cells. In the addition to the im-
portance of the reported concepts and methods to computational neuroscience, the possibility of reaching
percolation through morphological growth of a fixed number of objects represents in itself a novel paradigm
of great theoretical and practical interest for the areas of statistical physics and critical phenomena.

PACS. 89.75.Fb Structures and organization in complex systems – 02.10.Ox Combinatorics; graph theory
– 87.18.La Morphogenesis – 87.18.Sn Neural networks

The brain is a world consisting of a number of unex-
plored continents and great stretches of unknown terri-
tory. (Santiago Ramon-y-Cajal)

Neurons can be understood as cells which, along the
evolutionary process, have become highly specialized for
establishing connections between themselves along a wide
range of spatial scales (ranging from microns to meters).
In order to minimize metabolism and allow connections to
selective targets, neurons acquired their intricated, rami-
fied shapes. Indeed, instead of implementing casual con-
nections with every surrounding cell, a neuron links to
specific targets which can be nearby in the same neuronal
region or far away in another cortical area originating, in
the process, the basic architecture required for proper op-
eration of the central nervous system. Interestingly, the
connectivity pattern of a mature neuronal system is de-
termined not only by the genome, which is unable to code
all connections1, but predominantly by the history of neu-

a e-mail: luciano@ifsc.usp.br
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1 Indeed, even the fate of neuroblasts along the cell differen-

tiation process often does not involve genetical coding [1].

ronal activity under stimuli presentation. Neurons are pro-
duced at ventricular zones of the neuroepithelium, in the
form of neuroblasts, which therefore differentiate and mi-
grate to specific target regions and start to unfold their
dendritic and axonal processes [1]. As such structures de-
velop and extend towards specific targets, which occurs
under the guidance of trophic factors, they synapse and
start forming communities (or clusters) of connected cells,
organized in specific ways so as to achieve proper opera-
tion. Indeed, the functional properties of such structures
are to a large extent related to the underlying connecting
patterns, implying that one of the fundamental problems
in neuroscience is to understand how neuronal connections
are established during the development of the central ner-
vous system [1].

Since connectivity is the main purpose underlying neu-
ronal growth and organization, it is interesting to ob-
tain suitable mathematical structures and relationships
capable of representing and modeling the development of
neuronal systems at a high level of morphological real-
ism. Previous related works on activity-dependent neu-
ronal development have been reviewed in [2], and a phase
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transition approach to neuronal connectivity has been pro-
posed in [3], where the neuronal cells are represented in
terms of circles of growing sizes. While graphs/networks,
where neurons are assigned to nodes and synapses to
edges, provide a natural means to express the neuronal
connections, several concepts from statistical mechanics
can be used to model and simulate the connection dynam-
ics. By providing an interesting interface between graph
theory and statistical mechanics, the recent area of com-
plex networks [4–6] represents a particularly promising
perspective to bridge the gap between the morphology
and dynamics of neuronal systems. In particular, the con-
cept of percolation [7] stand out as particularly relevant
for such investigations. Previous related works include
the statistical physics investigation of scaling properties
and the degree of separation in cortical networks [8], the
small-world characterization of neuronal structures grown
in vitro [9], the use of critical percolation point for neu-
ronal shape characterization [10], and the identification
of electrically active clusters in neural networks [11]. Re-
lated works addressing the relationship between neuronal
geometry and function can also be found in the literature
(e.g. [12–15]). While such works have considered static
neuronal shapes, the development of a framework to model
neuromorphically realistic neurons reported in [16] allows
investigations of the neuronal connectivity during simu-
lated neuronal development, by monitoring the size and
other properties of the existing clusters in terms of time.
Such a perspective motivated the extension of the con-
cept of percolation to consider growing structures where
the shapes of the objects may vary with time, a possibility
proposed and investigated possibly for the first time in the
present work.

This article starts by describing how the neuronal cells
are represented and statistically modeled in terms of prob-
abilities and follows by presenting the simulation of neu-
ronal growth by using the Monte Carlo approach, as well
as the characterization of the obtained structures in terms
of the maximum cluster size observed along time, with
special interest given to percolation. Such issues are il-
lustrated with respect to a database of 2D neuronal cells
including cat retina ganglionar cells of the types alpha
(23 samples) and beta (27 samples), of which typical cells
are illustrated in Figure 1. Although growth of real neu-
rons is also influenced by trophic fields emanating from
putative targets, the simulations in the current work only
takes into account the typical geometrical features ob-
served in mature alpha and beta ganglion retinal cells.

1 Neuronal modeling

One first key isse in neuromorphic modeling regards how
to represent mathematically the geometry of neurons.
While the typically observed diversity of shapes for the
same class of cells immediately implies the use of statis-
tics, the choice of the best (in the sense of being the most
compact) set of morphometric parameters capable of rep-
resenting the neuronal shape without considerable loss of

(a)

(b)

Fig. 1. Example of alpha (a), [17], and beta (b) [18] cells used
in this work. Reproduced with permission.

information remains a challenging issue [15]. The method-
ology for 2D neuronal representation adopted in this work
follows the framework reported in [16], involving a proba-
bilistic model considering the number of branches, the an-
gles between them, the length of the dendritic and axonal
segments, branching probability, and the length and angle
of arcs of each branch. Therefore, the first step is to ob-
tain such measurements from images of the real neuronal
cells to be modeled. Typically, the cells are histologically
marked and prepared, mounted on slides, and the respec-
tive images acquired through a camera interfaced to a light
transmission (or fluorescence) microscope. The neurons in
such images are then identified and isolated (e.g. [19]),
producing binary representations (i.e. images containing
only the neuronal cell – marked as one, and the back-
ground – marked as zero). An alternative way to obtain
the binary images of the neural cells is through camera-
lucida drawings, as is the case for the images in Figure 1.
Once such binary images are obtained, their boundaries
are extracted by using a customized neural tracer2, pro-
ducing results such as those illustrated in Figure 2, which
corresponds to the boundaries of the cells in Figure 1.

The dendrites are henceforth understood as trees, so
that the respective hierarchical level can be precisely de-
fined while considering the soma as reference. Therefore,
the dendritic segments directly connected to the soma, as
well as branching points initiating at such segments, are
identified as being at hierarchical level 1, and so on. Our
simulations are restricted to a maximum of 10 hierarchical
levels, as there are very few branchings occurring at higher
levels in the real cells. The probability of branch points
for each considered type of cell are shown in Figures 3a
and b, respectively for alpha and beta cells. The probabil-

2 This neural tracer, developed by L.A. Consularo during
his Ph.D. at the Cybernetic Vision Research group, allows
operator-assisted tracing of the neuronal cells, producing re-
sults in the Eutectic format.
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(a)

(b)

Fig. 2. Traced cells obtained from the cells in Figure 1 by
using a customized neural tracer.
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Fig. 3. Probability function illustrating the branching proba-
bility of alpha (a) and beta (b) cells in each level.
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Fig. 4. Probability function of the number of primary den-
dritic segments to the alpha (a) and beta (b) cells.

ity of the number of dendritic segments directly attached
to the soma (i.e. hierarchical level 1) is also necessary for
the statistical model of the growing cells. Figure 4 show
the cumulative densities for the alpha (a) and beta (b)
neuronal types.

In addition to being essential for neuronal shape mod-
eling, the above branching and initial densities provide
interesting information by themselves. For instance, it is
clear from the two densities in Figure 3 that the alpha
cells are characterized by higher branching rates at the
lower hierarchical levels, as is clear from the more accen-
tuated decrease of the respective density along the hierar-
chical levels. Figure 4 presents the probability of primary
branches. The graph in Figure 4(a) shows that the al-
pha cells present high probability of having from 5 to 7
branches emanating from the soma, while the beta cells
have high probability of presenting over 10 branches.

In addition to the above probabilities, it is also nec-
essary to obtain probabilistic models of the dendritic seg-
ment arc-lengths. Although alpha cells are typically much
larger than beta cells (especially in the periphery of the
retina), we used size-normalized versions of the considered
neurons in order to have neurons with similar sizes. This
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Fig. 5. Distribution function of dendritic segments arc-lengths
of the alpha (a) and beta (b) cells.

allows our percolation study to be mostly defined by the
shape intrincacy of the cells rather than their sizes3. Fig-
ure 5 shows the cumulative two-variated density of such
lengths in terms of the hierarchical level for the alpha (a)
and beta (b) types of cells, while Figure 6 presents the
angles of these dendritic segment arc-lengths for the al-
pha (a) and beta (b) cells. The last features considered
in this work refer to the branch lengths and angles at the
branch points, which are shown in Figures 7 and 8 for
the alpha (a) and beta (b) cells. By “branch length” it
is understood the total arc-length while moving from the
branching point to the cell soma, another branch point,
or an extremity point.

Note that both branching angle densities (i.e. Figs. 6
and 7) are similar for both alpha and beta cells. The
length-related densities (i.e. Figs. 5 and 8) were obtained
for alpha cells and then normalized with respect to their
respective diameters (i.e. the largest distance between any
two points of each cell) in such a way that they have the
same average diameter as beta cells. Such a normalization

3 Given two cells with similar morphologies but different
sizes, the larger cell will obviously tend to percolate sooner.
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Fig. 6. Distribution function of dendritic segments angles (in
radians) of the alpha (a) and beta (b) cells.

was adopted so that the percolation only reflects the shape
(and not size) of the cells.

2 Neuronal synthesis

In order to generate the neuronal shapes, the probabilistic
model of the neuronal geometry described in the previous
section was statistically sampled by the Monte Carlo ap-
proach as explained in the following. Initially, the soma of
each cell was uniformly (Poisson distribution) distributed
along an N × N matrix (associated to a digital image).
The number of branches emerging from the soma was ran-
domly chosen according to the respective density, being
uniformly distributed along the somata, which are circu-
lar. For each cell, for each branch, the orientation of the
emerging segment was drawn from the respective distri-
bution. Straight segments are then incorporated, piece-by-
piece, into the growing process. The length and orienta-
tion of each of these segment pieces was sampled through
Monte Carlo from the respective statistical model. In or-
der to allow all neuronal cells to grow in a “simulta-
neous” fashion, a single segment piece is incorporated
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Fig. 7. Distribution function of the angles (in radians) at the
branch points of the alpha (a) and beta (b) cells.

into each growing branch, for each neuronal cell, at a
time (“round-robin” scheme). Every time a new branch
was visited, the probability for new branch or growth ter-
mination was sampled, and the respective action taken.
In case we have a branch4, the orientations of the two
branching new segments were sampled from the respec-
tive distributions, and those branches were subsequently
included in the “round-robin” growth scheme. The growth
of branches continued until one of the following condi-
tions is reached: (a) it is selected for interruption; or
(b) it reached 10 hierarchical stages. Figure 9 illustrates
morphologically-realistic neuronal networks obtained by
the growing process described above considering alpha (a)
and beta (b) cells.

3 Percolation dynamics

During the simulated neuronal growth, a synaptic connec-
tion is implemented every time a growing dendrite over-
laps any portion of the other current cells. So, as the

4 A branch point along the dendritic arborization corre-
sponds to a point where the growing dendrite bifurcates.
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Fig. 8. Distribution function of the branch lengths to the al-
pha (a) and beta (b) cells.

cells develop in size and shape, they tend to form more
connections. A group of connected cells is henceforth un-
derstood as a cluster. A natural representation of such
growing structures can be immediately obtained by us-
ing graphs whose nodes correspond to the neuronal cell
soma and the edges correspond to the synaptic connec-
tions. While several topological and morphometrical prop-
erties of the evolving neuronal networks can be quantified,
in this work attention is concentrated on the size S(t)
of the cluster containing the maximum number of nodes
– i.e. the dominating cluster – found at each time instant t
(i.e. the growing stage). The sizes S(t) are calculated from
the graphs which are constructed as the networks evolve.
The critical phenomenon of percolation is identified by
looking for an abrupt transition along S(t), which is re-
lated to the formation of the giant cluster [7]. After this
point, the growing neuronal structure is characterized by
the presence of such a giant community, which dominates
the subsequent connectivity dynamics.

In the following we consider simulations for the al-
pha and beta types of neuronal cells, i.e. the networks
involve just one of these types of neurons. Three types of
simulations were considered in the present work for each
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(a) (b)

Fig. 9. Examples of neuronal networks obtained by the adopted growth methodology considering the alpha (a) and beta (b)
models. Different gray levels were used for neuronal cell representation in order to facilitate the visualization of the individual
cells.

of the two neuronal classes: (i) just one growing neuron
is considered, which is replicated in order to obtain the
network, and the neuronal cells are not size-normalized;
(ii) same as before, but the neurons are size-normalized;
and (iii) each growing neuron is different one another (i.e.
they follow the same statistical densities, but are sampled
independently), and all neurons are size normalized. In all
these three cases, the chosen neuronal model is “stamped”
N times on the considered space (a rectangular window
of 1000 by 1000 elements) according to the uniform prob-
ability. In the first and second cases, new soma positions
are randomly selected at each realization, while the cell
shape is kept constant. In the third case, the cell posi-
tions remain fixed at all times, but a new single cell shape
is selected and used for all positions in each realization.

A total of 500 realizations was performed for each
considered configuration, from which the average and
standard deviation shown in the graphs were obtained.
In order to avoid intense superposition between cells,
cells were placed at least 5 pixels apart one an-
other. The size normalization takes the average diame-
ter 〈dbeta〉(understood as the largest distance between any
two points in the cell) of the beta cells as a reference for
mapping (through a scaling transformation) all the al-
pha cells so that their average diameter becomes equal
to 〈dbeta〉.

Situations (i) and (ii) have been considered in order
to keep statistical variability low and allow a more pre-
cise identification of the percolation critical point (not a
density as in traditional percolation theory, but a time
instant during the neuronal outgrowth). Situation (iii) is
more realistic, but implies larger variance. The three cases,
including alpha and beta realizations, are illustrated in
Figures 10−12, respectively.

Figures 10a−d presents the evolution of the maximum
cluster size considering growing densities of alpha cells,
while Figures 10e−h presents analogous graphs consider-
ing beta cells. As expected, the critical transition tends
to increase with the density of neurons, with markedly
sharper transition being verified for the beta neuronal
cells. Note that the percolation takes place sooner for the
alpha cells because of their substantially larger sizes.

Figure 11 presents the maximum cluster size in terms
of the growth stages for alpha (a−d) and beta (e−h) neu-
rons. Unlike the previous case, the the beta cells percolate
sooner than the alpha. More specifically, percolation was
typically observed after 400 added beta cells, but only af-
ter 600 incorporated alpha cells. Because these two types
of cells now have the same average diameter, the fact that
the beta neurons now percolate sooner should be under-
stood as a consequence of the greater “complexity” of the
beta cells, in the sense of presenting a more intricated
morphology. As indicated in Figure 6, which describes the
cumulative two-variated distribution of dendritic segment
angles, beta cells are characterized by higher dispersion
of angles, implying the overall dendrites to become more
disordered and spatially complex, which is in full agree-
ment with the obtained percolation dynamics, i.e. more
complex neuronal cells tend to percolate sooner than less
complex cells with similar sizes.

Figure 12 presents the maximum cluster size in terms
of the growth stages for alpha (a−d) and beta (e−h) neu-
rons in the case the shapes of the size-normalized neurons
in each simulation were allowed to be different. Compared
to the previous case, shown in Figure 11, these simulations
were characterized by a much larger dispersion of cluster
size values, as indicated by the larger error bars. Interest-
ingly, the average values obtained for the alpha (a−d) and
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Fig. 10. Mean and standard deviation of the size of the largest cluster in terms of increasing densities (300, 400, 500 and
600 cells) of alpha and beta cells. In this case, the alpha cells are not size normalized.
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Fig. 11. Mean and standard deviation of the size of the largest cluster in terms of increasing densities (300, 400, 500 and
600 cells) or normalized alpha (a−d) and beta (e−h) cells.
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Fig. 12. Mean and standard deviation of the size of the largest cluster in terms of increasing densities (300, 400, 500 and
600 cells) of alpha (a−d) and beta (e−h) cells using the same positions of the soma and different cell morphologies drawn.
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(a) (b)

Fig. 13. The mean shortest paths in terms of the network size N obtained at several network growth stages t for alpha (a) and
beta (b) cells. The neurons used in these simulations were size-normalized.

beta (e−h) cases are markedly similar, indicating that the
consideration of different cell neuronal shapes from the
same class tended to equalize the evolution of the overall
average connectivity. Indeed, when size-normalized (which
is the case), alpha and beta cells tend to present some sub-
stantial morphological similarity [20], accounting for the
above observed phenomenon.

The mean shortest path between nodes, an important
feature of complex networks, was also monitored during
the neuronal growth for normalized size cells. Figure 13
show, with respect to alpha (a) and beta (b) cells, the
shortest path in terms of the network size (i.e. the num-
ber of nodes N) at several instants t during the network
evolution. The shortest path was calculated in the tra-
ditional fashion (e.g. [5]), i.e. each disconnected pair of
edges was assigned the mean shortest path value among
the existing pairs of nodes. Observe that different evolu-
tion of the average shortest paths have been obtained for
the two different categories of neural cells, with the beta
cells tending to imply overall shortest paths for N > 300.

4 Concluding remarks

This article has reported on several new perspectives re-
lated to neuromorphic models and percolation induced by
dendritic growth. First, we have shown how morphologi-
cally realistic neuronal networks can be simulated by using
Monte-Carlo sampling of statistical models derived from a
series of geometrical measurements of real neuronal cells.
Second, we have investigated a new perspective to per-
colation studies in which, instead of incorporating new
connections of fixed size between the involved elements,
the percolation dynamics is defined by the progressive
growth of dendrites/axons, following biologically-realistic
rules derived from experimental data. The obtained results
indicate that the percolation in such evolving systems is
also characterized by abrupt transitions of the dominat-
ing cluster size along the progression of the growth and
connections. We have shown that distinct critical points
are usually identified for growing dynamics of systems un-
derlain by distinct neuronal morphologies. Three differ-
ent simulation cases have been considered, involving equal

and different cells and the presence or absence of size-
normalization. The simulations assuming identical size-
normalized cells implied that beta cells reached percola-
tion sooner than alpha cells, a result that is related to the
fact that the dendritic processes of beta cells tend to be
more intrincated and spatially complex.

The mean shortest paths calculates at several growth
stages were also considered. Because the mean values of
such a measurement clearly do not fall in sublogarithm
fashion with N , it can be safely concluded that the mor-
phologically realistic networks obtained in the present
work are not of the small-world type [5]. Actually, we have
verified that the size and shape uniformity of the neurons,
even when not normalized, tend to imply regularity to the
networks (in the sense of uniform node degree), therefore
avoiding small-world effects. Different results can be ob-
tained by using neurons with logarithmic distribution of
size, which can even lead to scale-free properties.

Such results establish and interesting connection be-
tween the statistical geometrical features of the consid-
ered cells and their potential for forming clusters among
the neuronal milieu. Such perspectives and results are par-
ticularly interesting because the functional properties of
neuronal networks are closely related to their connectivity
(e.g. [12,14,21,22]). The perspectives for further investi-
gations are many. For instance, it would be particularly in-
teresting to check how the consideration of more than one
distinct statistical model of neuronal geometry will affect
the measured critical point. Another interesting possibil-
ity is to investigate, in the spirit of [21], to what extent the
critical point statistics can be used as a resource for clas-
sification of the morphological types of involved neuronal
cells. A third promising future development is to quan-
tify, through simulations, how the geometrical properties
of the neuronal cells (e.g. [22]), by controlling the sizes
of the neuronal clusters, ultimately define the functional
properties of the obtained structures [14]. Still, it would be
interesting to correlate several measurements from com-
plex network research, especially those related to the hi-
erarchical structure of the networks [23], with the critical
percolation time.
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